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We present here a solution of the problem of how to constrnct analytically controls which 
give the optimal stability to a rigid body with a fixed point. We apply a theorem related to 
the direct method of Liapnnov. 

We consider a mechanical system consisting of a rigid body (a platform) with a fixed 
point. Its principal axes of inertia coincide with the axes of three homogeneous symmetric 
pendulums. These pendulums are set in motion by special motors. Such a system can be 
regarded as a gyrostat beaause its distribution of mass does not change in the process of 
motion. Let the fixed point 0 coincide with the center of mass; let 0X1X,X8 be the 
fixed coordinate system; 0~2~2x3 be the moving coordinate system attached to the body 
and coinciding with the principal axes of inertia (axes of the pendulums). 

TABLE 1 Let us introduce the following notations : ~1, pa, p3 are 

the projections of the absolute instantaneous angular velocity, 

1 x1 1 Xl 1 XI on the x2, x2, and x3 axis respectively, Cl, C,, and C,, are the 

Xl 

moments of inertia of the system about the xl, r, and z, axis 
all al2 al.9 

x2 a22 a23 

respectively, Is, Jr, and I,, are the axial moments of inertia 
a21 

X3 031 a32 a33 
of the pendulums, and ol, 02, and 03, are their relative angular 
velocities. The direction cosines between the axes 0X,X,X, 
and Ox,r,x, are shown in the table on the left. 

1. The statement of the problem. The initial equations of motion. The equations of 

motion of our system are written in the form of the three Enlerian dynamical equations 

c,g+(G- . c,) p2p3 + p2H3 - ~82 + ‘+ = 0 (123) 

(Hi = JiOi, i = 1, 2, 3) 
(1.1) 

The symbol (123) indicates that the remaining equations are obtained by cyclic 
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permutation. The equation (1.1) are followed by the nine Poisson kinematic equations 

da,, 
dt + I%%3 - P3aia = 0 (i = 1, 2, 3) (123) (1.2) 

We must take into account that the nine variables aik (i, k = 1, 2,3) are connected 

by six geometric relations 

(1.3) 

Both here and further the summation is performed from 1 to 3. In addition to (1.1) and 

(1.2) we shall introduce three additional equatfona describing the rotational motion of the 

pendulums. Neglecting internal friction these equations have the form 

Ji (0; + pi3 = ut (i = 1, 2, 3) (1.4) 

where uI, ul, and or are the controlling momenta generated by the motors. 

The systems of equations (1.1) to (1.4) describe compbxtaly the motion of our mechanical 

system. The obtained equations of motion paaft a par&alar solution corresponding to the 

position of sqailibrinm of the principal body (platform) with the controla switched off 

(uj = 0): 

pr = 0, (i, k = 1, 2, 31, mt = mi” 

We shall try to solve the problem of partial optimal atabilixatfon of the position of 

equilibrium (1.5) ; to do this we shall have to Choose ui as functions of pi, pa , ps , 

a,,, %, l 0 ‘, O& so as to ensum that, if kiti& perturbations are sufficiently small, 

then the platform will as~ptotfea~y move back to the initial position 

pt=O, Clik= *’ i=k (i,k=l,2,3) 
0 i+k , (1.6) 

This function should also minimise a functional whioh fully describes the character of 

the transitional process. Also, the angnlar veloeitien of the pendulums wf may not reach 

the& initial values oto. We shall assume 0: = 0. Our problem can be regarded 

for example as the problem of stabilization of the position of eqailibrium of an artificial 

satellite rotating about the center of mass. 

The angular velocities oi can, in general, be sliminared from out conaiderationa, in 

analogy with eliminating the cyclic velocities in analytical mechanics. In oar problem the 

vector of the angular momentum of the system about the point 0 is invariant, that is 

G = cod, and projected on the 0X1X,X, axes it gives 

7 (CrA + &I UK = hk = COIL& (k = 1,2, 3) 
(1.7) 
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Since the determinant of the system (1.7) is equal to 1, we caa solve the system with 

respect to Cfpi + ISi (i = 2, 2, 3). WC obtain 

(i = 1,2,3) (1.8) 

where Qi denotes the determinant of the system (1.7) in which the f-th colnmn is replaced 

by she column from hk. Differentiating (1.8) with respect to time sad using the obtafned 

expressions we shafl eliminate CO~’ from the equations (1.4). At the same time we shall replace 

the derivatives ath’ (i, k = 1, 2, 3) , by expressions from (1.2). This will result in the 

following system of three equations 

=-p2(hl~13+h2a23+h8ffS$)+ 

+ p3(hI al2 + h2a22+~3~3d---u~ (423) 
(1.9) 

taking into accouzt that 

a2lh2 - ad28 = al3 ow (1.91) 

In this way onr mechanical system k described by twelve equstions (1.2) and (1.9). 

with the variables conneoted by six equations (1.3). The angalar velocities CC+ do not 

appear in the obtained cqnations, consequently we have to solve the conventional problem 

of optimal stabilization of the position of equilibrium (1.6). The phase coordinates are 

pl, p2, psi all, cn12, . . ., cL33, and by (1.3) only sfx of them are independent. 

2. SalttMt of the problezt of opthai stabilhtioo ot a Platform. Assnmfng (1.6) to be 

the equations of the nnpertnrbed motion we shall constract the equations of the pertarbed 

motion, preserving the symbalism throughout for the initial variables and the perturbations. 

+I 
dt= -&Pa + h12~3 + PI (PZ, PS, all, *“rc19s)-t-@l f 123) (2.1) 

&zii _ -- 
dt 

Aii (i = ft 2% 3); ‘2 = c p3 + A12,d@$? = ps + A 
13 (123) 

hix=&, vi=+-+ 

(2.2) 

i- & = Psaia-JWis W) (i,k = 1,2, 3) 

Rere Ps, P,, P, are the omitted terms of the second order of smallness. The 

qnantfties 8th characterizing the initial psrtnrbations will be regarded ss small constant 

parameters. 

In addition to the equations (2.1) we shall also introduce tbe system of eqnatfons of 

the first approximations 

The system (2.3) and (2.2) will be called the ‘rsduced’ system as compared with the 

full system (2.11, (2.2). 
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The problem consists of the following: to determine functions ui of the phase 

coordinates so as to make the null solution 

asymptotically stable and to fulfill the condition for a minimum of the integral 

where R is a positive function which shall be determined in the process of solving the 

problem. At present we shall only define the form of ‘2, by putting 
(2.5) 

Q = Fl(p,,pz,~s) +F,(~u, * * -7 G) +~~i~i2fh(~,,~2r~3r~llt * * .,%) 

where 

E’I (PI, P2r Pa) = zeikpipk 
(2.51) 

and remembering that later on we shall impose certain suitable restrictions on the const- 

ant coefficients eik (eii > 0), and ni > 0 (i, k = 1, 2, 3) ; also, the function F, has 

to be defined,A denotes the possible terms of the order higher than two. The function F, 

should be a positive-definite quadratic form of velocities, which the function Fa will be 

assumed to be a positive (positive-definite if possible) quadratic form of &k. 

To solve our problem we shall use the fundamental theorem of the second Liapunov’s 

method of investigation of the problems of optimal stabilization (see for example [I] ). This 

theorem gives the sufficient conditions for optimal stabilization and is based on the 

Liapunov theorem on the asymptotic stability and on the partial differential equations due to 

Bellman. 

At the beginning we shall consider the problem of optimal stabilization of the unperturbed 

motion (2.4) on the strength of the ‘reduced’ system of equations. By the theorem, the 

optimal control it” and the optimal Liapunov functions V” should satisfy the following 

system of four equstions 

+ $& (- hszpl + hslpz + ~a’=) + 2 

+ SJ (PI, p2, p3, all, - - *, a33,‘G, 

(2.6) 

g + 2nivi’ = 0 (i = 1,2,3) 

Where 
(j - _!!!I _ _!?I 

l - aaa2 aazs 
(123) 

(2.61) 
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Since 

1 av vio = - z api (i=1,2,3) 
(2.7) 

we obtain one first order non-linear partial differential equation 

+&(~m * - *, a33) + A (PI, p2, P3, a119 * * .P 633) = 0 

determining V”. 

By (1.3) the perturbations aik (i, k = 1, 2, 3) are connected by six equations 

(k, 1= 1,2,3; k < I) (2.9) 

which can be regarded as integrals of the equations (2.2) and (2.3). 

We shall now introduce a function @,with nndetermined coefficients consisting of 

quadratic and linear terms (2.10) 

2% = - 2 z] kiati + 2 mipt2 + 2p1 z aik%k 
i i 

(ki>OI mi>O) 

-t 2Pa 3 bu&k f %)a,4 N@ik 

we assume that the function p is of the form 

(2.11) 

that is, it represents a quadratic form in all the variables PI, Pa, Ps, all, . . ., am. 

Partial derivatives av” / api, which by (2.71, express the control, are 

(2.12) 

W0 
mlpl + ~aik@ik? 

W” 
- = mapa -j- 2 b&ik, 

iW 
-= 
aP1 aPa 

aps = %A + ~%t%k 

i, k i,k f,k 

Substituting (2.1) into (2.8) and equating the coefficients of the second order terms to 

zero, we obtain a system of algebraic equations connecting the coefficients of the fnnc- 

tions V“ and Q 

dlanl + aas - aaa = ells dsana - bls + hl = ea2, 
(2.13) 

d,8n8 + Cla - cYl= e,a 

rGrs - m&k = 2e12, - mAa + m&a = %a, ~AI - m&s1 = %, 

dt =mif2ni (i = 1,2,3) 

The remaining eqnations break down into nine sets, linear with respect to &k, btr, 

and cu . Each of these sets contains three coefficients corresponding to the subscripts 1= k. 
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All sets have the same determinant 

--Q, J129, --hs2 

Al = --a - dz, hsl (2.14) 
bra, - hzl, - ds 

while their right hand aide terms contain numbers kt (j, = 1, &a). 

We shall assume the numbers di to be given and sufficientiy large (the lower bound 

for di will be determined later). Then, since hik is small the determinant A, will not be equal 

to zero and every set will have a unique solution. These are: 

a11 = b 11 = $1 = 0 

@126= -~(~*~32-~3~31), a13 = -_((d,h, + ~21~32) 

h2 = 2 (d&31 + hl3&d), hs = -3 bw8 + h12hsa) 

Cl2 = 2 (w2+k3~23)~ Cl3 = &d&21 -h&23) 

%a = b 22 = Cat = 0 

'2 (dahsn- h23h3d, a2k =&- a23 = $ CM3 +h3hn) 

b - - $ (d&l + hishsa), brs := - $- (d&u - huh,,) (2.15) 
21 - 

ka (dldz + ~13~3), c21= - &- c23 = ~(~h~+h~~l} 

aa = b 88 = c33 = 0 

a31 = $ (dshrs + h&i&, a32 = - & (d& + hi&l) 

b 31= $- (d&3 + &2h32h b sz = 2 (d&s-k&31) 

C3I = - $ (dlbl - hl&es), csa = - 2 (d&a + h&r) 

The formulas (2.15) show that, when di are sufficientfy large, then all &k, btlr, and 

Cik (4 k L=Z 1, 2, 3) being of the order lfdi are sufficiently mdl. This will secure a 

positfve-def initensss of the fnnction v. At the same time the function Fx @t, Pa, &I 

will also be positive-definite, since by (2.13) the coefficients etk (i # k) we small in 

comparison with eii. The function Fa is given in the form 

Since oath (,i, k = 1, 2, 3) are connected by six equations (2.9) the fsnction F, can 

be made poaitive-deffnite. The region Fa = 0 is determined by the equations 
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Together with (2.9) we obtain nine relations 

Q’rl =o (k, I= 1, 2, 3) (2.171) 

The fsnction F1 will be positive-definite if the position of tquiIibrium (2.4) is isolated. 

The latter takes place when 

D (Qll, Q112, . . ..QDss) 
R(w1, w2, . . .,ccaa) 1 aI1=...=m==o 

=ko (2.18) 

By (2.15) the condition (2.18) can be written in the form 

dsds + h&l - daka - linlhsl -dahaB+Msx 

A, = dahla - huhal d&s + h&n - dlhm - huha +O (2.19) 

dshrs + h&l &haJ. - h&a Wr + J&a 

The above relation is certainly satisfied when di is sufficiently Isrga. 

In order for the equation (2.8) to be exactly satisffsd for a given far&on V”, we mast 

write the fnnction A from (2.5) ln the form 

Addition of this fnnction does obviously not alter the sign-definiteness of the basic 

quadratic form. 

Note that at large valaes of di the relations (2.13) give 

dt = Vet6 I nr fi=i,2, 3) 

which means that lsrge valaes of di are eqnivalent to large values of C&Q 

(2.201) 

In this manner we have shown that the position of equilibriom (2.4) is stabilired on 

the strength of the ‘reduced’ system of equations (2.3). (2.2) by the controls (2.7), (2.12), and 

(2.15), if the constants kt, mi, and sf, are such that: (1) the forms p and Ft are positfve- 

definite ;(2) the conditions A, # 0, and As # 0 are satisfied. 

From these conditions and with fixed ki we can calculate the lower bonnd for rni / 2%. 
Besides, the control obtafned tarns oot to be optima1 with regard to the minlmam of the 

integral of the fnnctions n, (2.5). (2.13) and (2.20). 

It is easily seen that from the stabilization of the position of equilibrium (2.4) on the 

strength of the ‘reduced’ system of equations (2.3) and (2.2) implies the stabilization of 

(2.4) on the strength of the fall system of eqaations (2.1) and (2.2). Indeed, in neu vicinity 

of (2.4) , the termsPt,Pe,snd P3 ln (2.1) satisfy the conditions 
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IPll < El4 (lPz/--lP3I)~ I1 = max (I h,, I, 1 IL,,] ) (123 
(2.21) 

Here ~1, Eq, and &3 are sufficiently small positive constants. 

The function vv” which we constructed,determines the symptotic stability of the sol- 

ution (2.4) of the full system of equations (2.1) and (2.2), since the time derivative of JP 

from the full equations differs from the corresponding derivative from the ‘reduced’ equa- 

tions only by additional terms of higher order 

$2 Pi 
i 

(2.22) 

which, by (2.21). does not change its sign-definiteness, arising from the ‘reduced’ system. 

Consequently, the derived equation secures the stabilization of (2.4), taking into 

account the full system of equations (2.1), and (2.2). This stabilization, however, would 

not be optimal in the sense of minimizing the integral of the functions (2.5). (2.13) and 

(2.20), because the equation (2.8) would not be satisfied on account of the appearance of 

the new terms (2.22). Nevertheless, it is possible to secure the optimal stabilization (2.4). 

by adding to the derived functions ‘v” and a suitable terms of high order, which would take 

care of the terms (2.22). This method is not unique. For example we can, without changing 

v”, add all the terms of (2.22) with the opposite sign. 

3. Analysis Of the obtained results. According to (2.7). (2.12) and (2.15) the obtained 

control Vi0 (the control hOdiffers fromVtOby the factors Ji _ Ci) 

has the property that the terms which are linear with respect to the velocities&,&,and Ps 

and which have large coefficients di can be separated from the terms depending on the 

coordinates c%tk whose coefficients are expressed in terms of di and of the initial pertnrba- 

tions hik. The equation (3.1) depends essentially on the initial psrtnrbations ; the greater 

hik, the larger values of di must be chosen. We shall assume that hik. are suitably small, 

and that their magnitude is of the order of ack. Without loss of generality we can assnme 

k, = k, = k, = k > O.(It was never assumed that ki were distinct). Then, by (2.15) and 

taking into account A 1 z - dId,d,, the control (3.1) can be put into the following form 

- VI0 = dlp, + 2 (as2 - aa3) -I- PII -I- 1311 ( 123) (3.2) 

where the symbols [21i and [31i denote the omitted terms of the second and third order of 

smallness (taking into account the smallness of hik). Thus, the terms in (3.1) which depend 

on the coordinates, can be separated into terms of the first, second and third order of 

smallness. 
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It is useful to write d ovn the control (3.2) in form of the functions of the angular 

deviations of the platform. For example let the coordinates determining the orientation 

of the platform be the three Krylov angles [2] : ‘p (y awing), $ (trim angle), 8 (rolling). The 

investigated position of equilibrium (2.4) has the form 

cp =I# =e =o (3.3) 

The perturbation aik are expressed in terms of the perturbations of the angles q, q, fJ 

according to the formulas 

a,,=---+ . . . . ata= *+ . . . . a23 = --e+... 

(3.4) 

a21 = Cl f..., a31 =-I) +..., a32 = 8 +... 

The dots denote the terms of the order of smallness higher than one. From (3.2) and 

(3.4) we obtain 

- V1° =d,p,+m$e+..., -v~"=d2p2+~~+.., 
m, 

(3.5) 

- 7~3’ = d3p3 + -gcp+... 

The structure of the control equation (3.1) can be assumed in advance, by taking the 

following considerations. Let us consider the control 

vi* = - dipi (di > 0, i = 1,2,3) (3.6) 

It can be shown that we can select di in such a manner that all the roots of the 

characteristic equation of the system (2.3) will have negative real parts. The remaining 

roots of the characteristic equation of the first approximation system corresponding to 

(2.3), and (2.2) will be equal to zero. Conseqaently we can formally obtain the critical 

case of the nine zero roots. A complete and working solution of the problem of stability in 

this case has not yet been obtained. However, the right hand side members of the system 

(2.2) are such, that when the non-critical varfablespt, p2,and p3 vanish, they also vanish. 

That means that the last critical case is a eparticular’ one [3], for which the problem of 

stability is easily solved. The equation (2.4) is stable, and asymptocially stable with 

respect to the velocities pl, pz and ps. This means that the platform approaches asymptotic- 

ally one of the positions of equilibrium, which is in the neighborhood of (2.4). It means also 

that for the position of equilibrium (2.4) the control (3.6) secures the asymptotic stability 

with respect to the velocities and the ordinary stability with respect to the coordinates. To 

make (2.4) asymptotically stable with respect to the coordinates as well, it is sufficient 

to add to the control (3.6) small terms which are coordinate dependent. 

4. Effect of iotmml friction. In our investigations we neglected the viscous friction 

in the axes of the pendulums, which in real systems is always present and could influence 

essentially their motion. The equation (3.1) shows that the platform after initial perturbation 
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returns to the initial position of equilibrium (1.6). In this position the controlling moments 

ui vanish and the pendulums continue to rotate by inertia. However, the moments of the 

viscous friction in the axes ~ts,x~ 

Mf = - fiOi (fi>O, i=1,2,3) (4.1) 

being not compensated, will cause the platform to move away from the achieved position 

of equilibrium. To prevent this, the controlling moments ILL in the position of equilibrium 

(1.6) should not vanish, but should balance the resisting moments (4.1). Instead of the 

equations (4.1) we shall then have 

Ji (wi’ + pi’) = LT~ + Mi (i = 1,2,3) (4.2) 

In the position of equilibrium (1.6) the moments Rio = fiOi. By taking 

we are able to obtain the following results. The required expression for ui,O becomes 

ZZ~’ = Fiji - (Ci - Ji) oi” (i = 1,2,3) (4.4) 

where Wi are functions of pt, p2, ~3, ~~11, . . ., ass, h!, h,, and h, in agreement with 

(1.8) , and vi0 are obtained in the form (3.2). 

Finally we note that the obtained results remain valid also when the perturbations hik 

are finite. Selecting di sufficiently large we can satisfy all the inequalities given above 

and write the control equation in the form (3.2) or (4.4). 

The author expresses his gratitute to N.N. Krasovskii and G.K. Pozharitskii for their 

interest and valuable advice. 
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