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We present here a solution of the problem of how to construct analytically controls which
give the optimal stability to a rigid body with a fixed point. We apply a theorem related to
the direct method of Liapunov.

We consider a mechanical system consisting of a rigid body (a platform) with a fixed
point. Its principal axes of inertia coincide with the axes of three homogeneous symmetric
pendulums. These pendulums are set in motion by special motors. Such a system can be
regarded as a gyrostat because its distribution of mass does not change in the process of
motion. Let the fixed point O coincide with the center of mass; let 0X,X,Xy be the
fixed coordinate system; Oz z,7; be the moving coordinate system attached to the body
and coineiding with the principal axes of inertia (axes of the pendulums).

TABLE 1 Let us introduce the following notations: pi, ps, p; are
the projections of the absolute instantaneous angular velocity,
l x ' X | x on the %,, x,, and x; axis respectively, C,, C,, and C,, are the
moments of inertia of the system about the x,, x; and x, axis
X, da1 di2 dig

respectively, J,, J;, and Jy, are the axial moments of inertia

of the pendulums, and w,, w;, and w,, are their relative angular
velocities. The direction cosines between the axes OX,X, X,
and Ox,%,xs are shown in the table on the left.

Xs | am Oag Oss
X3 | am Ose Oz

1. The statement of the problem. The initial equations of motion. The equations of

motion of our system are written in the form of the three Eulerian dynamical equations

H
Cl% + (Cs—Cy) p2ps + peH s — psHy -+ djﬁ—l =0 a2

. (1.1)
(H, = Jo, i=1,23)

The symbol (123) indicates that the remaining equations are obtained by cyelic
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permutation. The equation {1.1) aze followed by the aine Poisson kinematic equations

d“n 0
+ Palis — Patlia = (i=123) @ 1.2

We must take into account that the nine variables or;;; (i, ¥ = 1,2, 3) are connected

by six geometric relations

20%&;;:{0 k#l (k, I=1, 2, 3) 1.9

Both here and further the summation is performed from 1 to 3. In addition to (1.1) and
{1.2) we shall introduce three additional equations describing the rotational motion of the
penduluma. Neglecting internal friction these equations have the form

Ji(o + pi) = (i=1,23) (1.4)
where Uy, U,, and Ug are the controlling moments generated by the motors.

The systems of equations (1.1} to {1.4) describe completely the motion of our mechanical
system. The obtained equations of motion permit a particular solution corresponding to the
position of equilibrinm of the principal body (platform) with the controls switched off
(w =0):

1, i=k .
pi=09 g = 0, itk (Lk=1,23), o=0 {1.5)

We shall try to solve the problem of partial optimal stabilization of the position of
equilibrium (1.5) ; to do this we shall have to choose u; as fanctions of py, pa, ps,
Oiyq, Cagy » + +5 Olgg, 80 as to ensure that, if initidl perturbations are sufficiently small,
then the platform will asymptotically move back to the initial position

1, i=k .
Pi=0» Qg = 0, iskk (Lk=1,23) (1.6)

This function should also minimise a functional which fully describes the character of
the transitional process. Also, the angular velocities of the pendulums @w; may not reach
their initial values @;°. We shall assume @‘;ao. Our problem can be regarded

for example as the problem of stabilization of the position of equilibrium of an artificial

satellite rotating about the center of mass.

The angular velocities w; can, in general, be eliminared from our considerations, in
analogy with eliminating the cyclic velocities in analytical mechanics. In our problem the
vector of the angular momentum of the system about the point O is invariant, that is
G = const, and projected on the OX X, X, axes it gives

g (Cipy + Hy) oy = hg = const (k=1,2,3) wn
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Since the determinant of the system (1.7} is equal to 1, we can solve the system with

respect to C;p; -+ H; (i =1, 2, 3). We obtain

Cipi +Jioy = Qi (@11, Agay + + - P33y hy, by, hy) (i=123) (1.8

where Q; denotes the determinant of the system {1.7) in which the i-th column is replaced

by the column from A, . Differentiating (1.8) with respect to time and using the obtained
expressions we shall eliminate ©; from the equations (1.4). At the same time we shall replace
the derivatives o (i, k =1, 2, 3), by expressions from (1.2). This will result in the
following system of three equations

(C1—J1) % = — Py (hy o35 + R 093 -+ by otss) + (1.9)
+ p3 (ki g + hatlgathsttae)—u; (123)

taking into account that
g Olgg — Olg10lgg == Clyg (129) (1.91)

In this way onr mechanical system is described by twelve equations (1.2) and {1.9),
with the variables connected by six equations (1.3). The angular velocities a; do not
appear in the obtained equations, consequently we have to solve the conventional problem
of optimal stabilization of the position of equilibrium (1.6). The phase coordinates are
P1, Pas P3» @1g> X1z + « +» Cyz, and by (1.3) only six of them are independent.

2. Solution of the problem of optimal stabilization of a platform. Assuming (1.6) to be
the equations of the unperturbed motion we shall construct the equations of the perturbed
motion, preserving the symbolism throughout for the initial variables and the perturbations.

d
B=—hups -+ huPs+ PPy, Pssoas, .0+ 01 (2 (20
dotss . i 4
g =4u (=123 T pop g, B0 bty
(2.2)
by =g—ge W=—gi A :
k=Ci—J; ! Loy A i1 = Pglliz — Pallis  UB) (i, k=12, 3)

Here p, P, P, are the omitted terms of the second order of smallness. The

quantities 4;; characterizing the initisl perturbations will be regarded as small constant
parameters.

In addition to the equations (2.1) we shall also introduce the system of equations of
the first approximations

% = — hisPa + h1aPs + ¥1 {23 (2.3)

The aystem (2.3) and (2.2) will be called the ‘reduced’ system as compared with the
full system (2.1), (2.2).
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The problem consists of the following: to determine functions v; of the phase

coordinates so as to make the null solution
pi=0, ox=0 (i k=1,23) (2.4)

asymptotically stable and to fulfill the condition for a minimum of the integral

o0}
S Q (Ph D2y Ps, %ty .« -, Yan,y U1, Uz, Ug) di (2.41)
iy

where () is a positive function which shall be determined in the process of solving the

problem. At present we shall only define the form of (0, by putting (2.5)

Q = F1 (pl» p2, Pg) + F2 (all, IR S ] d’33) + Znivi2+A(php2v p3aall, veosy 3{33)

where

y . 3 . .
Fy(p1y P2y ps) = %{ewmm 2.5

and remembering that later on we shall impose certain suitable restrictions on the const-
ant coefficients ¢;; (¢;; > 0), and n;>0 (i, k = 1, 2, 3) ; also, the function F, has
to be defined, A denotes the possible terms of the order higher than two. The function F,
should be a positive-definite quadratic form of velocities, which the function F, will be

assumed to be a positive (positive-definite if possible) quadratic form of o(;x.

To solve our problem we shall use the fundamental theorem of the second Liapunov’s
method of investigation of the problems of optimal stabilization (see for example [1]). This
theorem gives the sufficient conditions for optimal stabilization and is based on the
Liapunov theorem on the asymptotic stability and on the partial differential equations due to
Bellman.

At the beginning we shall consider the problem of optimal stabilization of the unperturbed
motion (2.4) on the strength of the ‘reduced’ system of equations, By the theorem, the
optimal control v;° and the optimal Liapunov fanctions V° should satisfy the following

system of four equations
LA haaps + 91°) + 2V (hospy — haaps + v5°)
N (— h1sps + huaps 1)+ 3 I 2301 21Ps 2 )+

ave o ove
+ a—‘;; (— haapy -+ haipz + 25°) + Z dipi + zkm A +

’ (2.6)
+ Q (pl’ P2, p37 Ol11y + .« .y 33, vlos 7)201 USO) = O
av° .
B_Pi +2nivi°=0 (”=112)3)
Where 5 o ave 2
L™ Bag, dotas (2.61)
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Since
o L oav {3
0 == o (i=1,2,3) (2.7)

we obtain one first order non-linear partial differential equation

0V°\~ av° Ve
Zz.nl (G ) Gy ( oopat Puspe) G (s o) &

ave .8
+ 5p—3‘ (— haep1 + hs1p2) + Z &ipi + Z ‘%"—k_ Aix + F1(p1, P2, Ps) + (2:8)
i LWk

-+ Fy(041, . - ., 0g3) - A (P1, P2y Psy Gary - - ., Olg3) = 0
determining V°.
By (1.3) the perturbations a; (i, £ = 1, 2, 3) are connected by six equations
Dy = ag + o + gamcxu =0 (k,1=1,2,3; k<) (2.9)
which can be regarded as integrals of the equations (2.2) and (2.3).

We shall now introduce a function (D, with undetermined coefficients consisting of

quadratic and linear terms (2.10)

20, = — 2 ko + D mip? + 2y Zk aixx -+ 2P }_.: bixdx + 21’32’]‘ Cintik
i i i, i, i,
(k; >0, m; > 0)

we assume that the function V° is of the form
2V° = 20, - Zkimii (2.11)
12

that is, it represents a quadratic form in all the variables P1, Pa, Ps3, %11, .. ., Olgg.
Partial derivatives g/° / §p;, which by (2.7), express the control, are
(2.12)
ave

ave v '
ap = TP + Zazkd;k, Fp = Mab + Zbik“ik, Fpy = MaPs -+ Zczkdik

ik t, k i,k
Substituting (2.1) into (2.8) and equating the coefficients of the second order terms to
zero, we obtain a system of algebraic equations connecting the coefficients of the func-
tions 7° and Q
. . (2.13)
d’ny + Qg5 — Qgy = €15, ANy — by F by = gy,  dgPng + €y — €= ey
Myhig — Mohyg = 2015, — Mybyy | Mahgy = 2615, Mohyy — Mmshy = 2ey4
di =my ! 2ny (i=1,23)

The remaining equations break down into nine sets, linear with respect to aix, bix,
and Ci . Each of these sets contains three coefficients corresponding to the subscripts i = %.
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All sets have the same determinant

— dl! }lzs, — hs
Ay =| —Hhs, —dy hsy (2.14)
k12, —hy, —ds

while their right hand side terms contain numbers k; (i = 1, 2,3).

We shall assume the numbers d; to be given and sufficiently large (the lower bound
for d‘- will be determined later). Then, since hik is small the determinant A, will not be equal
to zero and every set will have a unique solution. These are:

ay =by =6y =0
Qyp= — '::—i (dshss — hashs:), a3 = — i—’; (dshss 4 haihas)
b= (bt k) b= — g (uds+ huahe)
o= B (@t huhs) = A2 (dihgy — haghas)
Qgp = Doy =€y =0
o= (oo —hahs), 0z = B (dads + haik)
b= — 2 (i hushs)y bia = — g (dahas— huhy) (219
o= — 22 (it hushs), = A (dahua o+ Pashar)
agg = bgg = Cgg =0
O N 2> (dads + Paihay)
b= 2 (ddsthuhe) b= 5 (ki — k)
T o A (dafua + huahan)

The formulas {2.15) show that, when d; are sufficiently large, then all ay, bik, and
cix (i, k =1, 2, 3) being of the order 1/ d; are sufficiently small. This will secure =
positive-def initeness of the function V°. At the same time the function F; (Dy, Pss Ps)»
will also be positive-definite, since by (2.13) the coefficients e (i == k) are small in
comparison with e;;. The function F, is given in the form

Fo(ot, ..oy 0g) = '41;; <¢ny aikaik)s -+ ;372 (;Zkbika{k )2 -+ 3%3 (g‘ cikaik)z (2.16)

Since ok (i, & =1, 2, 3) are connected by six equations (2.9) the function F, can
be made positive-definite. The region F; = 0 is determined by the equations
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Oy = 2 Qixlik = 0, O = Zkbu;aik = 0, @32 = Z;‘Cikaik =0 (217
ik i, i,

Together with (2.9) we obtain nine relations
Ou =0 (khi=123) (2.171)

The function F, will be positive-definite if the position of equilibrium (2.4) is isolated.
The latter takes place when

[ DDy, By, . - ., Daa) +0 (2.18)

D (a1, Mg, o o vy gs) ]“u=---=¢u==0

By (2.15) the condition {2.18) can be written in the form

duds + hahksy —dshys— hnhes  — dshas -+ hniin
dshis ~— highs: didy + huhss  — dihm —hghas | £ 0 (2.19)
dshys - hyshar dyhgy — hyzhas dydy - hishes

A2=

The above relation is certainly satisfied when d; is suificiently large.

In order for the equation {2.8) to be exactly satisfied for a given function V°, we must
write the function A from (2.5) in the form

A(p1, pa, ps, any, - . ., Ogg) = — § (P18ix + Pabix + pscix) Ak (2.20)

Addition of this function does obviously not alter the sign-definiteness of the basic
quadratic form.

Note that at large values of d, the relations (2.13) give

d=Veu mn (i=1,2, 3) (2.201)

which means that large values of d; are equivalent to large values of e/ny

In this manner we have shown that the position of equilibrium (2.4) is stabilized on
the strength of the ‘reduced’ system of equations (2.3}, (2.2) by the controls (2.7), (2.12), and
{2.15), if the constants k‘, ™y and n; are such that: (1)the forms V° and F; are positive-
definite ; (2) the conditions A, == 0,end Ay == O are satisfied.

From these conditions and with fixed k; we can calculate the lower bound for m; / 2n;.
Besides, the control obtained turns out to be optimal with regard to the minimum of the
integral of the functions {}, (2.5), (2.13} and {2.20).

It is easily seen that from the stabilization of the position of equilibrium (2.4) on the
strength of the ‘reduced’ system of equations (2.3) and (2.2) implies the stabilization of
(2.4) on the strength of the full system of equations (2.1) and (2.2). Indeed, in near vicinity
of (2.4) , the terms Py, Py and Py in (2.1) satisfy the conditions
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|Py| < ey (1Pal+1ps), L = max (1Bszls [hag) 0129 (2.21)
Here €, €5, and €3 are sufficiently small positive constants.

The function V° which we constructed,determines the symptotic stability of the sol-
ution (2.4) of the full system of equations (2.1) and (2.2), since the time derivative of |/°
from the full equations differs from the corresponding derivative from the ‘reduced’ equa-
tions only by additional terms of higher order

ove
2ap b (2.22)

which, by (2.21), does not change its sign-definiteness, arising from the ‘reduced’ system.

Consequently, the derived equation secures the stabilization of (2.4), taking into
account the full system of equations (2.1), and (2.2). This stabilization, however, would
not be optimal in the sense of minimizing the integral of the functions (2.5), (2.13) and
(2.20), because the equation (2.8) would not be satisfied on account of the appearance of
the new terms (2.22). Nevertheless, it is possible to secure the optimal stabilization (2.4),
by adding to the derived functions V° and ) suitable terms of high order, which would take
care of the terms (2.22). This method is not unique. For example we can, without changing

V°, add all the terms of (2.22) with the opposite sign.

3. Analysis of the obtained results. According to (2.7), (2.12) and (2.15) the obtained
control v;° (the control u;° differs from y;°by the factors Ji—C)

1 1 o
—v,°=dips + 5 Z AixQlik, —0y° = dapa + s thk“ﬂf
! ik ik
1
—v3° =dzps + Brs Z Cirik
ik
has the property that the terms which are linear with respect to the velocities D, P2;and D3

(3.1)

and which have large coefficients d; can be separated from the terms depending on the
coordinates Olix whose coefficients are expressed in terms of di and of the initial perturba-
tions h;; . The equation (3.1) depends essentially on the initial perturbations ; the greater
hik' the larger values of di must be chosen. We shall assume that hik, are suitably small,
and that their magnitude is of the order of Glix. Without loss of generality we can assume
ky =k, = kg = k> 0.(It was never assumed that k; were distinct). Then, by (2.15) and

taking into account A, =~ — d,d,dg, the control (3.1) can be put into the following form
k
—of=dip+ - (otgz — atag) 4 [211 + [311 (123 (3.2)

where the symbols [2]'- and [3];‘ denote the omitted terms of the second and third order of
smallness (taking into account the smalluess of hik)‘ Thus, the terms in (3.1) which depend
on the coordinates, can be separated into terms of the first, second and third order of

smallness.
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It is useful to write d own the control (3.2) in form of the functions of the angular
deviations of the platform. For example let the coordinates determining the orientation
of the platform be the three Krylov angles [2]: @ (yawing), ¢ (trim angle), 6 (rolling). The

investigated position of equilibrium (2.4) has the form

The perturbation ci;; are expressed in terms of the perturbations of the angles ¢, v, 0

according to the formulas

Ugg =— @ F.ovy Qg = P ..., Qyg=—04...
0+

(3.9

I

CX,21= (")-—'—..-, a31=———1p+..., (132

The dots denote the terms of the order of smallness higher than one. From (3.2) and
(3.4) we obtain

. 2k o
——vlzdlpl—{—ﬁﬁ—}—.-., — Uy =d2P2+,,2Lf"l’+--'
(3.5)

o 2k
— U3 =d3P3+,Eq>+...

The structure of the control equation (3.1) can be assumed in advance, by taking the

following considerations. Let us consider the control

vi* = — dipi (di >0,i=1,2,3) (3.6)

It can be shown that we can select d; in such a manner that all the roots of the
characteristic equation of the system (2.3) will have negative real parts. The remaining
roots of the characteristic equation of the first approximation system corresponding to
(2.3), and (2.2) will be equal to zero. Consequently we can formally obtain the critical
case of the nine zero roots. A complete and working solution of the problem of stability in
this case has not yet been obtained. However, the right hand side members of the system
(2.2} are such, that when the non-critical variablesp,, Ds,and D3 vanish, they also vanish.
That means that the last critical case is a *particular’ one [3], for which the problem of
stability is easily solved. The equation (2.4) is stable, and asymptocially stable with
respect to the velocities p,, p; and P3. This means that the platform approaches asymptotic-
ally one of the positions of equilibrium, which is in the neighborhood of (2.4). It means also
that for the position of equilibrium (2.4) the control (3.6) secures the asymptotic stability
with respect to the velocities and the ordinary stability with respect to the coordinates. To
make (2.4) asymptotically stable with respect to the coordinates as well, it is sufficient

to add to the control (3.6) small terms which are coordinate dependent.

4. Effect of internal friction. In our investigations we neglected the viscous friction
in the axes of the pendulums, which in real systems is always present and could influence

essentially their motion. The equation (3.1) shows that the platform after initial perturbation
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returns to the initial position of equilibrium (1.6). In this position the controlling moments
u; vanish and the pendulums continue to rotate by inertia. However, the moments of the

viscous friction in the axes z,7,7,

Mi=—fioy (f;>0, i =1, 2, 3) (4.1)

being not compensated, will cause the platform to move away from the achieved position
of equilibrium. To prevent this, the controlling moments u; in the position of equilibrium
{1.6) should not vanish, but should balance the resisting moments (4.1). Instead of the

equations (4.1) we shall then have
Ji(oi +p)=w+M; (=123 (4.2)
In the position of equilibrium (1.6) the moments u;, = f;w;. By taking

"2;7;17 (us — f10) (i=1,2,3) (4.3)

1 1

Vi =

we are able to obtain the following results. The required expression for 3;;° becomes
u° = fio; — (Ci —JT)v (i=1,2,3) (4.9)

where w; are functions of Py, Py, P, Q115 - -+, Ugg, hy, hy, and hg in agreement with
(1.8), and 9;° are obtained in the form (3.2).

Finally we note that the obtained results remain valid also when the perturbations i
are finite. Selecting d; sufficiently large we can satisfy all the inequalities given above

and write the control equation in the form (3.2) or (4.4).

The author expresses his gratitute to N.N. Krasovskii and G.K. Pozharitskii for their
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